Code: 20CE4701C

IV B.Tech - I Semester – Regular / Supplementary Examinations OCTOBER 2024

REMOTE SENSING AND GEOGRAPHIC INFORMATION SYSTEMS (CIVIL ENGINEERING)

Duration: 3 hours Max. Marks: 70

Note: 1. This paper contains questions from 5 units of Syllabus. Each unit carries 14 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level CO – Course Outcome

			BL	СО	Max.				
					Marks				
UNIT-I									
1	a)	Explain with neat sketches the components	L1	CO2	10 M				
		of Remote Sensing systems.							
	b)	List the advantages and Disadvantages of	L1	CO2	4 M				
		Remote Sensing.							
OR									
2	a)	Explain the interaction of Electromagnetic	L1	CO2	10 M				
		energy with earth surface features in terms							
		of reflected transmitted and absorbed							
		energy.							
	b)	Enumerate the Remote Sensing applications	L1	CO2	4 M				
		in various fields.							

		UNIT-II						
3	a)	Write detailed notes on Spatial and	L2	CO2	7 M			
		Non-Spatial data.						
	b)	Explain the basic components of GIS.	L2	CO2	7 M			
	OR							
4	a)	What are the different types of attribute?	L2	CO3	10 M			
		Explain in detail.						
	b)	What are the various raster overlay	L2	CO3	4 M			
		operations used in GIS.						
		UNIT-III		000	4435			
5		fine briefly the following terms: i) Image	L3	CO2	14 M			
		coration, ii) Compression, iii) Segmentation,						
	1V)	Image Enhancement						
		OR						
6	a)	Explain the difference between Supervised	L3	CO2	10 M			
		and Unsupervised classification in GIS						
		image processing?						
	b)	Discuss the role of digital image processing	L3	CO2	4 M			
		in GIS applications?						
	UNIT-IV							
7	a)	Write the difference between the Raster and	<u>L4</u>	CO2	7 M			
		Vector data Model.	·					
	b)	Explain the concept of buffering in GIS.	L4	CO3	7 M			
		How is buffering used to analyze spatial						
		relationships in GIS datasets?						
	l		L	1				

OR								
8	Def	fine raster GIS and its fundamental	L4	CO2	14 M			
	cha	racteristics. Provide the examples of						
	real	l-world applications where raster data is						
	esse	ential.						
UNIT-V								
9	Dev	velop a case study of GIS application in the	L5	CO6	14 M			
	fiel	d of traffic management.						
OR								
10	a)	Using a flow chart, discuss how GIS can be	L5	CO3	10 M			
		used to monitor the Land uses and Land						
		cover (LULC) changes in urban areas.						
	b)	What role do base maps play in supporting	L5	CO4	4 M			
		urban planning and development decisions?						